
Sequencing of thousands of tumour samples has 
revealed the landscape of somatic mutations in protein- 
coding genes1. Most previous studies of cancer genomes 
have used exome sequencing rather than whole-genome 
sequencing (WGS) owing to lower costs and a focus on 
the regions that are considered to be most functionally 
relevant. However, the decreasing costs of sequenc-
ing have enabled WGS of thousands of tumours by 
individual research groups and efforts such as TCGA 
(The Cancer Genome Atlas) and ICGC (International 
Cancer Genome Consortium). One of the most impor-
tant benefits of WGS is the identification of variants 
in non-coding regions of the genome. Indeed, most of 
the variants obtained from WGS of tumour genomes 
lie there (FIG. 1). There is an increased realization of the 
importance of non-coding variants in cancer, and an 
ongoing collaboration between TCGA and ICGC, called 
the Pan-Cancer Analysis of Whole Genomes (PCAWG) 
aims to analyse non-coding variants in ~2,500 tumour 
and matched normal whole genomes. One of the biggest 
challenges of analysing non-coding or coding vari ants is 
to identify driver  mutations and to distinguish them from 
passenger mutations.

The link between inherited germline variants and 
complex disorders, including cancer, has been probed 
previously by numerous genome-wide association studies 
(GWASs) using DNA from non-disease cells (usually 
blood). These studies implicated various protein- coding 
genes in tumorigenesis (such as DNA repair and cell- 
cycle control genes)2. Importantly, these studies also 

revealed that many loci that are associated with cancer 
susceptibility lie in non-coding regions of the genome3,4.

In this Review, we discuss our current under-
standing of the role of non-coding sequence variants 
in cancer development and growth. We first describe 
distinctions in the nature of somatic versus germline 
sequence variants and then provide brief overviews of 
the various non-coding annotations. We then discuss 
diverse molecular mechanisms by which somatic and 
germline variants are known to lead to tumorigenesis, 
including their functional interplay. Finally, to inter-
pret non- coding variants linked to cancer, we describe 
how bioinformatics and experimental approaches can 
be used to prioritize them and validate their func-
tional relevance. Throughout our Review, we focus on 
the effects of DNA sequence variants in non-coding 
regions. However, we note that besides sequence alter-
ations, other changes can occur in non-coding regions 
of cancer genomes, such as epigenetic changes at reg-
ulatory elements and transcriptional dysregulation of 
non-coding RNAs (ncRNAs); for further information 
on these  phenomena, the reader is referred to REFS 5–9.

Genomic sequence variants
Most of the genome is non-coding and most DNA 
sequence variants occur in non-coding regions. Hence, 
the general properties of sequence variants are appli-
cable to non-coding variants. They range from single 
 nucleotide variants (SNVs) to small insertions and dele-
tions of less than 50 base pairs in length (indels), to 
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Exome sequencing
Sequencing the protein-coding 
portion of the genome using 
target-enrichment and 
high-throughput sequencing 
technology.

Driver mutations
Sequence variants that 
confer growth advantage 
to tumour cells.

Passenger mutations
Sequence variants that do not 
contribute to cancer growth.

Germline variants
Heritable variants that are 
transmitted to offspring. These 
variants are constitutional 
(that is, present in all cells of 
the body).
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Abstract | Patients with cancer carry somatic sequence variants in their tumour in addition to the 
germline variants in their inherited genome. Although variants in protein-coding regions have 
received the most attention, numerous studies have noted the importance of non-coding 
variants in cancer. Moreover, the overwhelming majority of variants, both somatic and germline, 
occur in non-coding portions of the genome. We review the current understanding of 
non-coding variants in cancer, including the great diversity of the mutation types — from single 
nucleotide variants to large genomic rearrangements — and the wide range of mechanisms by 
which they affect gene expression to promote tumorigenesis, such as disrupting transcription 
factor-binding sites or functions of non-coding RNAs. We highlight specific case studies of 
somatic and germline variants, and discuss how non-coding variants can be interpreted on a 
large-scale through computational and experimental methods.
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Genome-wide 
association studies
(GWASs). Studies that 
interrogate multiple common 
genetic variants along the 
genome in large cohorts of 
individuals to evaluate whether 
any variant is associated with a 
specific trait.

Single nucleotide variants
DNA sequence changes at 
single nucleotides.

Somatic variants
Variants that are not inherited 
from a parent and are not 
transmitted to offspring.

Penetrance
The proportion of individuals 
carrying an allele (or a 
genotype) that also express 
the trait (phenotype) 
associated with it.

Chromoplexy
(From the Greek pleko, 
meaning to weave, or to braid). 
A class of complex somatic 
DNA rearrangements whereby 
abundant DNA deletions and 
intra- and inter-chromosomal 
translocations that have 
originated in an 
interdependent way occur 
within a single cell cycle.

Chromothripsis
(From the Greek thripsis, 
meaning shattering into 
pieces). A clustered 
chromosomal rearrangement 
in confined genomic regions 
that results from a single 
catastrophic event, usually 
limited to one chromosome.

larger structural variants. Structural variants can be 
copy number variants (CNVs; such as deletions and 
duplications) or copy-number neutral (such as inver-
sions and translocations). An average human genome 
contains roughly 4 million germline sequence variants 
relative to the reference genome10, whereas a tumour 
genome typi cally contains thousands of variants rel-
ative to the same individual’s germline DNA11 (FIG. 1). 
Although somatic variants are known to be present in 
healthy tissues12,13, they are relatively rare compared 
with the number of somatic variants in tumours. Thus, 
most studies of somatic variants have focused on 
tumours, and in this article we refer to somatic variants 
as the ones specific to tumour cells. Somatic mutation 
frequency varies considerably across different cancer 
types11,14, as do the relative proportions of non-coding 
and coding variants (FIG. 1).

A discussion of germline variants is important, as 
cancer is known to have a familial component, and sev-
eral non-coding variants are known to play a part in 
cancer development. The two-hit hypothesis is a widely 
known mechanism by which germline variants can pro-
mote oncogenesis (discussed below). Rare, non-coding 
germline variants with high penetrance may be directly 
responsible for tumorigenesis (for example, as observed 
in familial cancer cases15), whereas variants with low 
penetrance may modulate the effects of somatic var-
iants2. The number of germline variants relative to 
the reference human genome per individual differs by 
ethnicity, and individuals from different populations 
show varied profiles of rare and common variants10. 
With the exception of paediatric cancers, most cancer 
cases occur at an older age. Thus, the germline variants 
associated with increased cancer susceptibility for non- 
paediatric cancers do not typically have a fitness effect 
at reproductive age, which is perhaps the reason for the  
continued prevalence of such variants in the population. 
In addition, germline variants often show linkage dise-
quilibrium (LD) — that is, association of alleles at mul-
tiple loci. LD between variants, especially the common 
ones with high allele frequencies, presents a unique set 
of challenges in disentangling the causal disease vari-
ants from the ones that they are linked with. Owing to 
their low allele frequencies, rare variants do not exhibit 
strong LD with common or other rare variants16.

Germline and somatic variants exhibit many distinct 
features. First, although both of them comprise SNVs, 
indels and structural variants, a much higher fraction of 
somatic variants consists of structural variants, includ-
ing large genomic rearrangements. For example, fusion 
events between distant genes have been observed in 
many cancer types but are rare in germline sequences. 
Similarly, complex genomic rearrangements, including 
chromoplexy17 and chromothripsis18, are known to occur 
in cancer cells. Chromosomal aneuploidy, whereby an 
entire chromosome may be lost or gained, is also often 
observed in cancer19. Second, unlike somatic variants, 
germline variants occur in all tissues of the body. Thus, 
they must be compatible with organismal viability, 
which is probably why they are generally not as dis-
ruptive as the major chromosomal rearrangements or 
as aneuploidy observed in tumour cells. However, the 
functional effect of germline variants might not be mani-
fested in all tissues, for example if they occur in regions 
of closed chromatin or if they disrupt a binding site of a 
transcription factor (TF) that is not expressed in the tis-
sue. Third, somatic sequence variants may not be shared 
by all cells in the tumour tissue. Such tumour hetero-
geneity makes interpretation of somatic variants more 
complex. Fourth, various phenomena, such as kataegis20 
and genome-wide mutational signatures11, are character-
istic only of somatic variants. In particular, more than 20 
mutational signatures have been identified in 30 differ-
ent cancer types. Some signatures (such as the one asso-
ciated with the APOBEC family of cytidine deaminases) 
are common across many different cancer types, whereas 
other signatures (such as the one observed in malignant 
melanoma and linked with damage caused by ultravi-
olet light) are specific to particular tumour classes11. 
Finally, unlike germline variants, somatic variants are 
not inherited. Thus, they are not subject to the recom-
binatorial effects of meiosis and hence do not show LD  
(discussed above).

Non-coding element annotations
To understand the effect of sequence variants in 
non-coding regions, we first need to examine the role of 
various non-coding functional elements. Below, we dis-
cuss these elements and the approaches used to annotate 
them in the genome.

Non-coding elements can have diverse roles in the 
regulation of protein-coding genes. Broadly speaking, 
they consist of cis-regulatory regions21 and ncRNAs. These 
elements are generally identified by functional genomics 
approaches or sequence conservation and often display 
cell- and tissue-type specificity (FIG. 2).

Cis-regulatory regions include promoters and dis-
tal elements (enhancers, silencers and insulators), which 
regulate gene expression following binding by TFs. 
TFs bind to specific DNA sequences (motifs) within 
their larger regions of occupancy (peaks), which can 
be identified using chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) assays. They bind 
DNA in regions of open (non-nucleosomal) chromatin, 
which can be identified using DNase I hypersensitivity 
assays, and DNase I footprinting can also help to identify 

Author addresses
1Meyer Cancer Center, Weill Cornell Medical College, New York, New York 10065, USA.
2Institute for Precision Medicine, Weill Cornell Medical College, New York, New York 10065, USA.
3Institute for Computational Biomedicine, Weill Cornell Medical College, New York,  
New York 10021, USA.
4Department of Physiology and Biophysics, Weill Cornell Medical College, New York,  
New York 10065, USA.
5Bina Technologies, Roche Sequencing, Redwood City, California 94065, USA.
6Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, 
New York 10065, USA.
7Centre for Integrative Biology, University of Trento, 38123 Trento, Italy.
8Program in Computational Biology and Bioinformatics, Yale University, New Haven,  
Connecticut 06520, USA.
9Department of Molecular Biophysics and Biochemistry, Yale University, New Haven,  
Connecticut 06520, USA.
10Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA.

R E V I E W S

94 | FEBRUARY 2016 | VOLUME 17 www.nature.com/nrg

© 2016 Macmillan Publishers Limited. All rights reserved



Nature Reviews | Genetics

Solid / Liquid
Adult / Child

So
m

at
ic

 m
ut

at
io

ns

Self-renewing tissue:  more       less

10

100,000

10,000

1,000

100

0

0.96

0.98

1.00

N
on

-c
od

in
g 

fr
ac

ti
on

A
ve

ra
ge

 n
um

be
r o

f S
N

V
s

pe
r s

am
pl

e

AML MB STADBRCA PAAD LIHCCLL PRADDLBC

AML MB STADBRCA PAAD LIHC LUADCLLPA PRADDLBC

PA LUAD

AML MB STADBRCA PAAD LIHCCLL PRADDLBCPA LUAD

Reference genome BRCA LUAD

Unannotated

Pseudogene ncRNA

Histone

DHS

Figure 1 | Somatic mutations in various cancer types. Somatic tumour mutations were obtained from whole genome 
studies in REFS 11,17,137, and cancer types are ordered from left to right based on average number of single nucleotide 
variants (SNVs) per sample. Bar plots denote the average number of SNVs. Box plots show the fraction of non-coding SNVs 
(based on GENCODE 19). Spearman correlation between total number of mutations and non-coding fraction = 0.32, 
P = 2.20 × 10−15. Note that this correlation is when we exclude pilocytic astrocytoma (PA), which shows great variability  
in the number of mutations and has been hypothesized to be a single-pathway disease. This positive correlation  
could be due to the higher number of passenger mutations in tumours with high total numbers of mutations, and  
most non-coding mutations corresponding to passenger events. Reference genome pie-chart shows the coverage of 
different non-coding categories in the reference human genome. BRCA (breast cancer) and LUAD (lung adenocarcinoma) 
pie-charts show mean SNVs per sample in each category for these two cancer types. As one region or variant can overlap 
multiple categories, the following hierarchy is used to categorize non-coding variants: non-coding RNA (ncRNA), 
pseudogene > DNase1 hypersensitive site (DHS) > histone > unannotated. ncRNAs and pseudogenes are from GENCODE 
19, DHS from 125 cell lines from REF. 138 and histone modifications from the Encyclopedia of DNA Elements Data 
Coordinating Center (ENCODE DCC; version March 2012). The fraction of non-coding SNVs that is not annotated is lower 
in BRCA and LUAD genomes relative to the fraction of non-coding genome that is not annotated in the reference genome. 
This could be a real effect reflecting enrichment of SNVs in functional annotations or bias due to difficulties in identifying 
SNVs in complex repetitive regions that are also hard to annotate. AML, acute myeloid leukaemia; CLL, chronic 
lymphocytic leukaemia; DLBC, diffuse large B cell lymphoma; LIHC, liver hepatocellular carcinoma; MB, medulloblastoma; 
PAAD, pancreatic adenocarcinoma; PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma.
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Kataegis
(From the Greek kataigis, 
meaning thunder). 
A phenomenon that is 
characterized by large clusters 
of mutations (hypermutation) 
in the genome of cancer cells. 
An APOBEC family enzyme 
might be responsible for the 
kataegis process.

Cis-regulatory regions
Regions that regulate the 
expression of genes on  
the same DNA molecule.  
These include promoters, 
enhancers, silencers, insulators 
and untranslated regions.

Enhancers
Distal cis-regulatory regions 
bound by transcription factors 
that activate genes by helping 
the recruitment of RNA 
polymerase to the promoters.

high-resolution TF-binding sites within the larger DNase 
I hypersensitive sites (DHSs)22,23. Furthermore, DNA 
methylation and other histone modifications can mod-
ulate TF accessibility to DNA. Indeed, several histone 
marks are associated with specific putative functions: 
for example, trimethylated Lys4 of histone 3 (H3K4me3) 
with active promoters, acetylation of Lys27 of histone 3  
(H3K27ac) with active promoters and enhancers,  
and H3K27me3 with repressed regions24. Such sites of 
histone modifications can also be identified using ChIP-
seq assays. Although most sequence-specific TFs and 
some chromatin marks lead to highly localized ChIP-
seq signals (hundreds of nucleotides), other marks (such 
as H3K9me3 and H3K36me3) are associated with large 
genomic domains that can cover up to a few mega bases. 
Thus, overall, epigenetic changes can alter TF accessibil-
ity in different cellular states and may be thought of as 
changing the activity of regulatory elements, resulting 
in cell-type specificity of their associated genes. This is 
similar to the way one thinks of differential activity of a 
universal gene set in different cell types.

Distal regulatory elements may regulate gene 
expression by interacting with promoters in the three- 
dimensional (3D) structure of the genome. Linking the 
distal elements to their target protein-coding genes in 
the 3D chromatin structure is crucial to understand the 
effects of sequence variants in them. Multiple approaches 
have been used to link cis-regulatory regions to their 
target genes. For example, chromosome  conformation  
capture (3C) technology has demonstrated that regulatory 
sequences can control transcription by looping to and 
physically contacting target coding genes that are located 
tens or hundreds of kilobases away25,26. The 3C technol-
ogy probes one-versus-one contacts in the 3D space of 
the genome. Further variations of the 3C technology  
have since been developed that probe one-versus- 
all (4C), many-versus-many (5C) and all-versus-all 
(HiC) contacts26. Other approaches that have been used 
to link distal regulatory elements to their target genes 
include correlation of histone marks at enhancer regions 
and target gene expression across multiple cell lines27 and 
links between expression quantitative trait loci (eQTLs) 
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Figure 2 | Identification of cis-regulatory elements using functional genomics assays and evolutionary conservation. 
a | Regulatory elements can show differential activity across tissues and can be identified by various functional genomics 
assays, including DNase I hypersensitive sites (DHSs, for regions of open chromatin) or ChIP-seq peaks (for histone 
modifications and transcription factor (TF) binding). b | Some elements (yellow) may not show activity in limited functional 
genomics experiments and are identified by evolutionary conservation only. Bold white text indicates conservation. 
c | Distal regulatory elements can be connected to target coding genes using various approaches (including chromosome 
conformation capture (3C) assays, correlation of enhancer activity and gene expression, and expression quantitative trait 
loci (eQTLs)). All the connections can then be compiled into regulatory (TF to target gene) and enhancer–promoter 
networks. A regulatory network is shown with TFs and target genes as nodes and interactions between them as edges.  
The interactions can be tissue specific (red, brown and green edges) or ubiquitous (blue and yellow edges).
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Silencers
Distal cis-regulatory regions 
bound by transcription factors 
that repress gene expression 
by preventing RNA polymerase 
from binding to the gene 
promoter.

Insulators
Regions that block the 
interaction between enhancers 
and promoters.

DNase I footprinting
A method to detect the exact 
binding sites of DNA-binding 
proteins based on the fact that 
a protein bound to DNA 
protects it from cleavage by 
DNase I.

Chromosome 
conformation capture
(3C). A biochemical method 
whereby the three-dimensional 
organization of chromatin in 
living cells is fixed and 
analysed.

Expression quantitative 
trait loci
(eQTLs). Loci in which DNA 
sequence variants are related 
with expression levels 
of mRNAs.

Endo-siRNAs
Endogenously produced small 
interfering RNAs that regulate 
gene expression by binding 
and cleaving mRNA targets or 
mediating heterochromatin 
formation.

Negative selection
Selective pressure that  
results in the removal of 
deleterious alleles.

Single nucleotide 
polymorphisms
(SNPs). Single nucleotide 
variants that show variability in 
the human population. As used 
in the context of this Review, 
they may be common (with 
high allele frequency) or rare 
(with low allele frequency).

and associated genes (discussed below)28. The result-
ing linkages can then be studied as a  comprehensive 
 network29 (FIG. 2).

Several large-scale efforts such as ENCODE24 and 
the National Institutes of Health (NIH) Roadmap 
Epigenomics Consortium30,31 were launched to create 
a comprehensive map of regulatory regions. Besides 
TF-binding sites, many other modes of cis-regulation  
exist in the genome. The 3ʹ untranslated regions 
(3ʹ UTRs) of mRNAs contain binding sites for micro-
RNAs (mi RNAs; discussed below) and also have a role 
in mRNA stability and translation32. 5ʹ UTRs contain 
regulatory elements for both transcription and trans-
lation stages, such as the 5ʹ-cap structure, translation 
initiation motifs and internal ribosome entry sites33. 
High-throughput RNA sequencing (RNA-seq) yields 
functional insights into the genome. Correlation of gene 
expression with the occurrence of sequence variants 
helps to identify eQTLs in non-coding regions, which in 
turn point to the putative functional role of the region34. 
Gene expression studies across various tissues can reveal 
regulatory regions that are associated with tissue-specific 
expression35. The Genotype–Tissue Expression (GTEx) 
project has provided an atlas of gene expression across 
multiple tissues and many individuals, which can be 
used to identify potential regulatory regions28,35.

RNA-seq also reveals non-coding transcripts, which 
can be further confirmed to not have protein-coding abil-
ity by the absence of open reading frames or proteomic 
analysis. Certain histone modifications associated with 
active transcription can also indicate ncRNA activity, 
such as H3K4me3 for promoters of ncRNA- encoding 
loci and H3K36me3 for actively transcribed ncRNAs. 
ncRNAs can be divided into several categories, such as 
tRNAs, rRNAs, small nucleolar RNAs (snoRNAs), small 
nuclear (snRNAs), mi RNAs and long ncRNAs (lncRNAs; 
which are >200 nucleotides)36. All these RNAs act through 
different mechanisms to modulate gene expression, and 
many are known to have an important role in cancer biol-
ogy, in particular mi RNAs and lncRNAs7. mi RNAs inhibit 
target gene expression by binding to the 3ʹ UTRs of their 
mRNAs and causing mRNA degradation or repression of 
translation. The precise mechanisms of action of many 
lncRNAs remain unclear. That said, a number of lncRNAs 
have been shown to act as molecular scaffolds that bind 
proteins, DNA or other RNA molecules, and are able to 
modulate gene expression37–41.

Transcribed pseudogenes are a particular type of 
ncRNA that bear a clear resemblance to functioning 
protein-coding genes. Pseudogenes are copies of coding  
genes that have lost their ability to code for proteins 
owing to disabling mutations, such as premature stop 
codons and frameshift insertions or deletions. They can 
be divided into duplicated and processed, based on their 
formation from duplication or retrotransposition of the 
parent gene, respectively42,43. Processed pseudogenes 
typi cally lack the promoter sequence and intronic struc-
ture and contain a 3ʹ-poly(A) tail. Although pseudogenes 
cannot code for proteins, they can be transcribed and can 
regulate the expression of their parent genes, for example 
by generating endo-siRNAs (endogenous small interfering 

RNAs) and participating in the RNA interference path-
way44,45 or by acting as molecular sponges, competing 
with parent gene mRNAs for miRNA binding7.

Evolutionary conservation of genomic sequence 
across multiple species is also used to annotate non- 
coding regions46,47. Comparative analysis of human with 
mouse, rat and dog genomes showed that at least ~5% 
of the genome is conserved48–50. Because only ~1.5% of 
the genome codes for proteins, the remaining ~3.5% 
conserved regions likely contain regulatory elements 
and ncRNAs. Furthermore, 481 segments that are at least 
200 base pairs long are 100% conserved between mice, 
rats and humans. These regions, termed ultra- conserved 
elements, cover ~107 kilobases of the genome and also 
exhibit high conservation among vertebrates51. Of these 
481 ultra-conserved elements, 370 do not overlap protein- 
coding exons. Analysis of the sequence variants in these 
non-coding, ultra-conserved elements is important 
because they have been shown to have a role in cancer 
biology. Some of them are transcribed and act as ncRNAs 
that exhibit aberrant expression in tumorigenesis and 
indeed can be used to differentiate cancer types52,53.

Besides selection constraint across multiple species, 
non-coding elements also exhibit conservation among 
humans. Negative selection within the human popu-
lation can be estimated using various metrics, such as 
enrichment of rare alleles and reduced density of single 
nucleotide polymorphisms (SNPs)24,54,55. These metrics can 
be especially important to identify elements that show 
human-specific conservation and function56. By estimat-
ing conservation in hundreds of functional non-coding 
categories, sensitive and ultra-sensitive elements were 
identified54. These elements show strong depletion of 
common polymorphisms and enrichment of known 
disease-causing mutations. It has also been shown that 
negative selection among humans can be used to identify 
candidate cancer driver mutations54.

The functional activity of conserved non-coding ele-
ments can be tested using various assays. For example, 
hundreds of evolutionarily conserved regions (includ-
ing ultra-conserved elements) have been tested for their 
in vivo activity as enhancers and the results are available 
from the VISTA database57.

We summarize the various sources of non-coding 
element annotations in TABLE 1. The web links for file 
downloads are provided at the end of the article.

Roles for somatic variants in cancer
In this section, we discuss some known cases of somatic 
variants and their likely role in tumorigenesis. Most of 
the examples noted below were identified in focused 
studies of cancer genes and their regulatory regions, 
and only a few were identified through WGS of tumour 
genomes. Indeed, few studies have tried to explore the 
role of non-coding somatic variants in cancer develop-
ment in a systematic manner through large-scale ana-
lysis of tumour whole genomes54,58–63. In FIG. 3, we show 
study design strategies to probe non-coding mutations 
in tumour genomes. We note that variant calling in 
non-coding regions from next-generation sequencing 
of cancer whole-genomes can be especially challen ging. 

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 17 | FEBRUARY 2016 | 97

© 2016 Macmillan Publishers Limited. All rights reserved

http://encodeproject.org
http://roadmapepigenomics.org
http://roadmapepigenomics.org


Oncogene
A gene that is often 
upregulated in cancer and  
can lead to or promote 
cancer growth.

This is partly because roughly half of the human genome 
consists of repetitive DNA, which presents technical 
challenges in alignment and variant calling using short 
reads, especially for the identification of structural 
variants64,65. Because cancer genomes contain a higher 
fraction of structural variants than germline genomes, 
variant detection becomes even more challenging. In 
addition, the depth of coverage for cancer WGS needs 
to be more than typically used for germline WGS to 
account for decreased purity and increased ploidy and 
heterogeneity of tumour samples66.

As more whole genomes are analysed, we are likely 
to see new types of mutational effects; for example, most 
known point mutations related to oncogenesis lead to 
gain of TF motifs, and we expect to see examples of 
mutations leading to loss of motifs. Below, we discuss 
some case studies in which non-coding variants disrupt 
regulatory elements or create new ones (FIG. 4).

Gain of TF-binding sites. TERT (telomerase reverse tran-
scriptase) encodes the catalytic subunit of the enzyme 
telomerase. Telomerase lengthens telomeres, allowing 
cells to escape apoptosis and become cancerous. TERT 
expression is generally repressed in normal somatic cells, 
but can be overexpressed in cancer67. In the past few 
years, numerous studies have reported recurrent muta-
tions in the promoter of TERT in many different cancer 

types15,67–69. These mutations create binding motifs for 
the ETS family of TFs, including TCFs (ternary com-
plex factors), leading to their binding to the TERT pro-
moter and subsequent upregulation of gene expression 
(FIG. 4B). Tumours in tissues with relatively low rates of 
self- renewal (including melanomas, urothelial carci-
nomas and medulloblastomas) tend to exhibit higher 
frequencies of TERT promoter mutations69. The high 
occurrence of these mutations points to their role as 
driver as opposed to passenger mutations.

Gain of TF-binding sites has also been observed 
for enhancers, which constitute important distal  
cis- regulatory elements and play a major part in gene 
transcription. In particular, super-enhancers are regions 
that recruit many TFs and drive the expression of  
genes that define cell identity70. Recently, it was reported 
that somatic mutations create MYB-binding motifs in 
T cell acute lymphoblastic leukaemia (T-ALL), forming a 
super-enhancer upstream of TAL1 (T cell acute lympho-
cytic leukaemia 1), which results in its overexpression71. 
TAL1 is an oncogene that codes for a basic helix–loop–
helix TF, which has an important role in erythroid cell 
 differentiation and is implicated in haematopoietic 
malignancies.

Fusion events due to genomic rearrangements. Genomic 
rearrangements can lead to fusion of active regulatory 
elements with oncogenes. For example, the 5ʹ UTR of 
TMPRSS2 is frequently fused with ETS family genes 
(for example, ERG and ETV1) in prostate cancer72. This 
leads to ERG overexpression, which disrupts andro-
gen receptor (AR) signalling by inhibiting the expres-
sion of AR and its target genes and inducing repressive 
epigenetic programmes73. AR has an important role 
in lineage- specific differentiation of the prostate, and 
its misregulation is linked with cellular dedifferenti-
ation and malignant transformation. Furthermore, 
genomic rearrangements are also significantly associated 
with AR-binding sites in a subset of prostate cancers,  
indicating that AR binding may drive the formation of  
structural rearrangements74,75.

In another example, it was reported that somatic 
structural variants juxtapose coding sequences of GFI1 
or GFI1B (growth factor independent 1 family onco-
genes) proximal to active enhancers (an event known 
as ‘enhancer hijacking’) in medulloblastoma76 (FIG. 4C). 
Activated GFI1 and GFI1B, combined with MYC activa-
tion, can then promote medulloblastoma patho genesis. 
Similarly, in T-ALL the TAL1-coding sequence is fused 
with the promoter of the ubiquitously expressed SIL (SCL-
interrupting locus) gene, leading to overexpression of  
TAL1 (REF. 77), a rearrangement found in 25% of cases 
of human T-ALL. Thus, TAL1 may be overexpressed 
in T-ALL either because it is fused to the promoter 
of another gene or because of the gain of TF-binding 
sites caused by point mutations (discussed above).  
These examples of fusion events add to the list of known 
examples in lymphoid malignancies, whereby genomic 
rearrangements bring oncogenes (including MYC and 
BCL2 (B cell lymphoma 2)) adjacent to active promoters 
or enhancers78.

Table 1 | Non-coding annotations

Annotation Resource

Transcription start sites GENCODE 
FANTOM

Transcription 
factor-binding sites and 
motifs

ENCODE 
Roadmap epigenomics 
JASPAR 
Transfac 
CIS-BP

DHS (regions of open 
chromatin)

ENCODE 
Roadmap epigenomics

Histone marks ENCODE 
Roadmap epigenomics

Integrated chromatin 
states (including 
enhancers)

ENCODE 
Roadmap epigenomics 
(derived from methods such 
as ChromHMM and Segway) 
FANTOM

Enhancer–promoter 
linkages

ENCODE 
Roadmap epigenomics 
FunSeq2

Transcription factor–
target gene linkages

ENCODE (derived from 
ChIP-seq) 
ENCODE (derived from DHS) 
Roadmap epigenomics

Topologically associated 
domains from HiC

ENCODE

Various types of ncRNAs GENCODE 
miRBase 
snoRNABase 
GtRNAdb 
MiTranscriptome

DHS, DNase I hypersensitivity site; ncRNA, non-coding RNA.
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ncRNAs and their binding sites. Dysregulation of 
 ncRNAs is a cancer signature, and at least in some cases it 
could be due to the presence of somatic variants in them. 
MALAT1 (metastasis-associated lung adenocarcinoma 
transcript 1; also known as NEAT2) is a lncRNA that 
regulates the expression of genes that are associated with 
metastasis. It was first identified in lung cancer but was 
later observed to be upregulated in many different can-
cers, including bladder cancer79,80. However, the reasons 
for its upregulation are not clear. In a pan-cancer analysis 
of ~3,200 tumours from 12 cancer types, MALAT1 was 
found to be significantly mutated in bladder cancer1. This 
indicates that mutations in the MALAT1 sequence might 
be under positive selection in the tumour. It is known 
that positive selection in coding genes can be linked with 
their dysregulation, whereby the mutations lead to loss 
or gain of function. Similarly mutations in MALAT1 
might be related to its overexpression in bladder can-
cer. In another example, copy number amplification of a 
lncRNA, lncUSMycN, is thought to contribute to neuro-
blastoma progression81,82. lncUSMycN binds to the RNA-
binding protein NonO, leading to upregulation of MYCN 
 oncogene, which further leads to tumorigenesis.

Besides sequence variants in ncRNAs themselves, 
mutations in their binding sites are also linked to can-
cer. For example, miR-31 targets the AR mRNA directly, 
and a mutation disrupting a miR-31-binding site in the 
AR gene can lead to overexpression of AR in prostate 
cancer83 (FIG. 4D).

Role of pseudogenes in modulating the expression of 
a parental gene. Because of their resemblance to their 
parental protein-coding genes, transcribed pseudogenes 
are thought to have a natural way of affecting and 
regu lating their parental counterparts44. In particular, 
pseudo gene deletion or amplification can affect compe-
tition for miRNA binding with the parent gene, which in 
turn could affect the expression of the parent gene. PTEN 
and BRAF are well-studied cancer genes that are often 
dysregulated in tumours. They both have pseudogenes 
that can act as miRNA sponges. PTEN is a tumour sup-
pressor that negatively regulates the AKT (also known 
as PKB) signalling pathway84. The PTEN pseudogene is 
deleted in cancer, and as a result more mi RNAs bind 
to the 3ʹ UTR of the parental PTEN mRNA, leading to 
downregulation of its expression84 (FIG. 4E).

By contrast, overexpression of the BRAF pseudogene 
in mice leads to increased miRNA sequestration, which 
results in overexpression of the BRAF gene85. BRAF is an 
oncogene that plays an important part in the mitogen- 
activated protein kinase (MAPK) signalling pathway, 
and its overexpression leads to increased MAPK activ-
ity. Genomic aberrations of the BRAF pseudogene have 
been observed in many cancer types85.

Roles for germline variants in cancer
Most of the non-coding germline variants that are 
associ ated with cancer susceptibility have been identi-
fied by GWASs, although some were discovered through 
focused studies of specific cancer genes or pathways. 
GWASs have typically used SNP-sensitive microarrays 
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Figure 3 | Study designs commonly used to identify germline and somatic 
non-coding sequence variants linked with tumorigenesis. Common germline 
variants have mostly been probed by genome-wide association studies (GWASs) using 
blood samples, in which the genotypes of cases are compared with those of controls. 
Effect sizes can be estimated using statistical tests, such as measuring the odds ratio139. 
Rare germline variants need whole-genome sequencing (WGS) data, and variants are 
often collapsed in the same element (blue blocks) to gain statistical power (burden 
tests)88. We note that WGS enables the identification of both common and rare variants 
linked with tumorigenesis. Somatic sequence variants also need WGS data from tumour 
versus matched normal tissue (blood is used when normal tissue is not available), and 
driver mutations are often identified by aggregating variants across elements58. 
Computational methods (such as those listed in TABLE 2) can be used to prioritize the 
variants and interpret their functional effects. Experimental approaches (such as those 
shown in FIG. 5) can be used for functional validation. Generally, the variants that pass all 
these steps are then translated to the clinic for diagnostic and therapeutic purposes.
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Burden tests
Statistical methods to test the 
cumulative effect of multiple 
variants in a genomic region.

(for example, iCOGS array86) that also include variants 
in non-coding regions. However, a major limitation of 
the array-based GWAS approach is that only common 
variants are represented, so associations with disease risk 
can only be identified for these common variants. The 
availability of WGS data from matched normal tissue of 
cancer patients with proper controls from healthy indi-
viduals allows the investigation of both rare and com-
mon variants linked with cancer risk (FIG. 3). In general, 
the highly deleterious variants with stronger functional 
impact are more likely to be rare54,87. However, rare vari-
ant association studies of individual variants are usually 
underpowered owing to their low frequencies. Thus, 
rare variants in the same element are often collapsed 
into a single variable to gain statistical power (in the 
 framework of burden tests)88.

Like somatic variants, germline non-coding vari-
ants can also affect gene expression in many different 
ways; for example, point mutations in binding motifs 
of sequence-specific TFs may disrupt their binding, 
and large deletions may remove entire TF-binding sites 
or enhancer elements (FIG. 4). However, we note that 
GWAS SNPs associated with cancer risk might not be the 
causal variants and might instead be in LD with them. 
Functional studies of GWAS SNPs and those in LD with 
them can help to identify the causal variants and shed 
light on their mechanism of action. Below, we discuss a 
few examples of non-coding germline variants that are 
related to cancer susceptibility and functional effects of 
which have been studied.

Promoter mutations. Germline mutations in the TERT 
promoter are associated with familial melanoma15. 
Similarly to the effects of somatic mutations, these cre-
ate binding motifs for the ETS family of TFs, including 
TCFs (FIG. 4B). The functional effects of these mutations 
are more likely to be observed in the tissues where these 
TFs are expressed. Increased expression of the TCF 
ELK1 gene is observed in female-specific tissues, such 
as ovary and placenta. Horn et al.15 reasoned that besides 
melanoma, this may be related to the increased ovarian 
cancer risk in women who are carriers of the mutation.

Moreover, a SNP in the MDM2 promoter is asso-
ciated with accelerated tumour formation in many 
different cancer types89,90. This SNP likely increases 
the binding affinity of the Sp1 TF, leading to upregu-
lation of MDM2. MDM2 is a negative regulator of the 
tumour suppressor p53, so MDM2 overexpression leads  
to suppression of the p53 pathway, resulting in increased 
tumour formation.

SNPs in enhancers. Multiple SNPs in a gene desert on 
chromosome 8q24 upstream of MYC are related to 
increased risk for many cancer types (breast, prostate, 
ovarian, colon and bladder cancers and chronic lym-
phocytic leukaemia)91. Several observations, such as his-
tone methylation and acetylation marks and 3C assays, 
suggest that these 8q24 SNPs occur in regions that act as 
enhancers for MYC in a tissue-specific manner. Tissue-
specificity of these regulatory regions might be the rea-
son why these SNPs are associated with specific cancer 

types. In another example, a prostate cancer-associated 
SNP occurs in a cell-type specific enhancer and leads to 
increased HOXB13 binding92. This, in turn, increases 
the expression of RFX6, which is linked to cell growth in 
prostate cancer. In addition, a recent study showed that a 
polymorphism in a super-enhancer leads to differential 
binding of the GATA TF and influences neuroblastoma 
susceptibility93.

Hormone-regulated cancers (such as prostate, breast, 
ovarian and endometrial cancer) present an interesting 
case in which the effect of mutations in TF-binding sites 
might vary with age owing to differential TF activity 
during a person’s lifetime. AR and oestrogen recep-
tor (ER) are nuclear receptor TFs that are activated by  
the androgen and oestrogen hormones, respectively. The 
production of these hormones varies substantially dur-
ing an individual’s lifetime, leading to varied activity of 
AR and ER. Thus, the effect of germline polymorphisms 
in the promoters or enhancers that are recognized by 
these TFs can be age-dependent and can vary depending 
on the abundance of TFs94. For example, the effect of 
a mutation in the DNA motif that decreases the bind-
ing affinity of the TF may be felt more strongly when  
the TF abundance is low (FIG. 4B). This is because the 
high TF abundance may compensate for the slight loss 
of binding affinity.

Variants in introns. Variants in introns can affect splice 
sites and also cause loss of regulatory repressor elements. 
For instance, a rare mutation in an intron of BRCA2 causes 
aberrant splicing and is related to Fanconi anaemia (a rare 
recessive disorder associated with a high cancer risk)95. 
Also, germline CNVs spanning intronic inhibitor regu-
latory elements can lead to the overexpression of target 
transcripts, potentially modulating cell proliferation or 
cell migration. For example, the loss of an intronic regula-
tory element in MGAT4C (α-1,3-mannosyl-glycoprotein  
4-β-N acetylglucosaminyltransferase C) was found to be 
associated with an increased risk of developing aggressive 
prostate cancer in a  population-based study96.

SNPs in ncRNAs and their binding sites. In an effort to 
find germline variants that are associated with ovarian 
cancer, Chen et al. performed targeted sequencing of  
mi RNAs and 3ʹ UTRs (as they contain miRNA-binding 
sites) of ~6,000 cancer-associated genes from 31 patients 
with ovarian cancer 97. They found enrichment of a vari ant 
in the 3ʹ UTR of PCM1 (pericentriolar material 1) in cases 
versus controls. PCM1 associates with the centrosome 
complex in a cell-cycle dependent manner and is mis-
regulated in ovarian cancer. Although the mech an ism of 
action of the variant is not clear, it is possible that it alters 
miRNA binding (because it is located in the 3ʹ UTR), 
resulting in differential PCM1 mRNA expression.

Whereas most cancer-associated polymorphisms are 
related to increased risk, some of them can also be benefi-
cial and reduce susceptibility. A SNP in miR-27a impairs 
the processing of pre-mir-27a to its mature version. The 
reduced miR-27a level results in increased expression of 
its target gene, HOXA10 (homeobox A10), and reduced 
susceptibility to gastric cancer98. HOXA10 codes for a 
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Positive selection
Directed selection that forces 
the allele frequency of 
advantageous mutations  
to increase.

TF that plays a central part in tumour biology, likely by 
regulating the expression of key  downstream genes, such 
as TP53 (REF. 99).

The examples above do not constitute an exhaustive 
list of all known cases of non-coding germline variants 
that are associated with altered cancer risk, but are meant 
to illustrate the diverse ways in which many regulatory 
polymorphisms exhibit their functional effects. Other 
methods of identifying variants with potential func-
tional consequences, such as eQTLs and allele-specific 
expression analyses, have been used to interpret can-
cer-associated loci identified through GWAS100–102. Such 
studies reveal germline determinants of gene expres-
sion in tumours and help to establish a link between 
 non-coding risk loci and their target coding genes.

Interplay between germline and somatic variants
As is apparent from several of the case studies described 
above, cancer results from a complex interplay of inher-
ited germline and acquired somatic variants. Knudson’s 
two-hit hypothesis is widely known, whereby one allele 
of a tumour suppressor gene is disrupted by a germline 
variant and the second through somatic mutation, result-
ing in oncogenesis103. Loss of heterozygosity (LOH) events 
affecting non-coding elements have also been observed. 
In these cases, somatic variants disrupt the only function-
ing copy of the non-coding element, as one copy is already 
disabled by germline variants. For example, one study 
reported that many miRNA-encoding loci are located 
at regions undergoing LOH — overall 80 mi RNAs were 
located at regions undergoing LOH or amplification104. 
The loss of these mi RNAs may promote oncogenesis by 
leading to overexpression of their target oncogenes. In 
addition, two lncRNAs, LOC285194 and BC040587, were 
noted to be in a region that frequently undergoes deletions 
and LOH in osteosarcoma105. Deletions of these ncRNAs 
are also associated with poor patient survival. A sepa-
rate study later found that indeed LOC285194 acts as a 
tumour suppressor106. Overall, we expect the availability 
of thousands of tumour–normal matched whole genomes 
from the PCAWG project will enable the high-resolution 
analysis of such LOH events in different cancer types and 
the simultaneous probing of non-coding elements for the 
presence of germline and somatic variants.

In a contrasting scenario to LOH events, a common 
SNP (rs2853669) in the TERT promoter weakens the 
effects of somatic TERT promoter mutations. As observed 
in bladder cancer, patients with somatic lesions in the 
TERT promoter who also carried this germline SNP 
showed better survival107. From a mechanistic viewpoint, 
the common SNP might weaken the effect of somatic 
mutations because it disrupts a pre-existing ETS2-binding 
site. Thus, the multiple germline and somatic variants 
in the TERT promoter particularly demonstrate the 
complex relationship of regulatory variants with cancer 
 susceptibility, oncogenesis and patient survival.

Computational methods for identifying drivers
Computational prediction of drivers is a challenging 
task. Below we discuss the various methods that exist to 
 predict drivers in coding and non-coding regions.

Broadly speaking, driver identification uses two 
lines of evidence: detection of signals of positive selection 
(that is, the presence of more recurrent mutations than 
expected by random chance)14 or prediction of mutations 
with high functional impact108. Analysis of the recurrence 
of somatic variants from tumour samples in functional 
elements to identify regions under positive selection is 
similar to the burden test strategy that is used to associate 
rare germline variants with complex traits109. Such ana-
lyses can be done for a specific cancer type or across mul-
tiple cancers110. In addition, computational tools that try 
to identify driver genes by detecting positive selection sig-
natures need to account for genomic mutation rate covari-
ates (such as transcriptional activity and DNA replication 
timing) that lead to mutational heterogeneity across the 
genome14,111. Methods that aim to predict the functional 
impact of nonsynonymous mutations in coding genes 
(for example, SIFT112 and PolyPhen113) can be used for 
both germline and somatic variants. These methods use 
many features, such as evolutionary conservation, protein 
structural information and physicochemical properties of 
amino acid changes108. Nevertheless, there is significant 
room for improvement of these methods108.

Computational identification of non-coding drivers 
is in many ways even more challenging than coding 
drivers owing to their complex and varied modes of 
action (as discussed in this Review) and our poor under-
standing of non-coding regions in general. Non-coding 
mutations are also more abundant than coding ones and 
thus the key mutations with functional impact have to 
be distinguished from a larger set of passenger events.

Some methods of identifying non-coding drivers 
analyse the recurrence of somatic variants from tumour 
samples in functional elements58,59,61,111. We note that 
such methods that try to identify driver non-coding 
elements (that is, those undergoing positive selection 
in tumours) also need to account for genomic muta-
tion rate covariates like the methods for driver analyses  
of coding genes, as discussed above14,111,114. A number of 
computational tools also exist to annotate and prioritize 
potentially functional non-coding variants with high 
impact. A list of these tools with their key features and 
corresponding references is provided in TABLE 2. Most of 
these tools can interpret both SNVs and indels, and some 
tools (for example, ANNOVAR, VEP and GEMINI) 
also analyse structural variants. Many tools first anno-
tate variants with various functional annotations (such 
as TF-binding sites and ncRNAs). Some of them try 
to interpret the effect of cis-regulatory mutations at a 
nucleotide-level resolution by computing whether they 
create new TF-binding motifs or lead to loss of existing 
ones115. In addition, various biological networks can pro-
vide information about the connectivities of the target 
genes of non-coding variants. In particular, mutations in 
regulatory regions of highly connected genes in protein– 
protein interaction and regulatory networks have been 
suggested to have a higher functional impact than those 
targeting peripheral genes in the network54,116. Also, 
high conservation among humans and across multiple 
species tends to be an indicator of function, and hence 
it is used as a feature by many tools. Some tools are 
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designed specifically for common GWAS variants (for 
example, FunciSNP, Haploreg and GWAS3D) and try to 
identify candidate regulatory SNPs that are correlated 
with GWAS SNPs. This is because the GWAS hit may 
not be the causal variant but might be in LD with it. 
Thus, they identify putative causal variants for complex 
disorders, including cancer susceptibility. Finally, some 
methods integrate all the features to provide a score for 
the likely functional impact of each variant (for example, 
RegulomeDB, CADD, FunSeq and FitCons).

Experimental approaches for functional validation
Most functional validation studies of mutations have 
focused on the coding portion of the genome. With an 
expanding appreciation that non-coding mutations have 
an important role in cancer progression, several recent 
studies have begun to explore methods to functionally 
assess non-coding mutations. For example, experimental 
approaches to understand the effects of cis-regulatory 
mutations in promoters and enhancers on cellular func-
tions are illustrated in FIG. 5. The main strategies first 
require introducing the sequence variants (FIG. 5a), deter-
mining the resulting molecular level effect on transcrip-
tion using high- and low-throughput functional assays 
(FIG. 5b) and demonstrating direct biological significance 
as manifested by alteration in oncogenic properties (for 
example, increased invasion, proliferation or colony 
 formation; FIG. 5c).

One way to introduce sequence variants 
involves the use of the CRISPR–Cas9 system to edit  
the genome117 (FIG. 5a). Oligonucleotides containing the 

multiple mutations may also be synthesized directly 
for high-throughput screening. Then, the direct con-
sequence of non-coding mutations can be evaluated 
using high-throughput sequencing-based assays118–120 
or low- to medium-throughput luciferase reporter 
assays68 (FIG. 5b). Analysis of functional consequences 
of non-coding mutations in promoters can be achieved 
in a high-throughput manner using a modification of 
cis-regulatory element analysis by sequencing (CRE-
seq)118. In this approach, synthetic promoter libraries 
drive the expression of a common reporter gene and 
a downstream unique barcode sequence that identi-
fies the upstream promoter. RNA-seq then reveals the 
effects of promoter variants on the expression levels of 
their paired barcode sequence. Unlike for promoters, the 
activity of enhancers is thought to be independent of 
their location, so enhancer libraries can be incorporated 
into high-throughput reporter assays using different 
reporter construct arrangements121. In CRE-seq-based 
approaches120,122, the enhancer is placed upstream of the 
reporter gene and the identifying barcode, whereas for 
self-transcribing active regulatory region sequencing 
(STARR-seq)119 the enhancer library is placed down-
stream of the reporter construct and is itself expressed 
at the RNA level, and hence can be identified directly 
by RNA-seq rather than requiring a separate barcode 
sequence. The cloned libraries can be transfected into 
eukaryotic cells in a high-throughput, pooled format, 
and RNA-seq is used to assess the resulting expression 
level of the reporter (specifically, the expressed unique 
barcode or downstream enhancer) driven by each variant 

Table 2 | Computational methods to prioritize non-coding variants with functional effects

Tool Variant type Functional 
annotation

Conservation LD 
calculation

Somatic 
mutation 
recurrence

Scoring 
scheme

Refs

SeattleSeq SNV, indel Y Y N N N 138

SNPnexus SNV, indel Y Y N N N 140,141

ANNOVAR SNV, indel, SV Y Y N N N 142

VEP SNV, indel, SV Y N N N N 143

OncoCis SNV, indel Y Y N N N 144

GEMINI SNV, indel, SV Y Y N N N 145

FunciSNP SNP Y N Y N N 146

HaploReg SNP, indel Y Y Y N N 147

GWAS3D SNP Y Y Y N Y 148

is-rSNP SNV N N N N Y 149

RegulomeDB SNV Y N N N Y 150

SInBaD SNV N Y N N Y 151

CADD SNV, indel Y Y N N Y 152

FunSeq SNV, indel Y Y N Y Y 54,115

GWAVA SNV, indel Y Y N N Y 153

FitCons SNV Y Y N N Y 154

DeepSEA SNV, indel Y Y N N Y 155

Indel, insertion and deletion; LD, linkage disequilibrium; SNP, single nucleotide polymorphism; SNV, single nucleotide variant; 
SV, structural variant.
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Figure 5 | Methods for functional validation of non-coding variants. a | Mutations in 
cloned DNA fragments can be generated using site-directed mutagenesis or the 
CRISPR–Cas system. Synthetic oligonucleotides with a wild-type or mutant sequence 
can also be chemically synthesized. b | Functional output of the non-coding mutations can 
be determined either using a single or combinatorial approach involving 
high-throughput sequencing and/or luciferase (LUC) reporter assays. In high-throughput 
sequencing, effects of mutations in cis-regulatory elements (promoters and enhancers) 
can be studied by an approach called cis-regulatory element analysis by sequencing 
(CRE-seq)118,122. For CRE-seq, synthetic regulatory element constructs with wild-type and 
mutated sequence are cloned into reporter construct, which is tagged at the 3ʹ end using 
a specific nucleotide barcode that identifies the upstream promoter or enhancer 
element. In an alternative method for characterizing enhancer variants, self-transcribing 
active regulatory region sequencing (STARR-seq)119, enhancer libraries are flanked by 
synthetic adaptor DNA sequences and cloned downstream of a transcription reporter 
construct. For both approaches, RNA transcripts from these libraries are used for cDNA 
synthesis followed by high-throughput sequencing. The expression driven by each 
element is measured by the ratio of the fraction of reads in the cDNA pool and  
the genomic DNA pool for each library construct; the particular element driving the 
expression of each transcript is identified based on the sequence of the transcribed 
barcode (for CRE-seq) or the transcribed enhancer (for STARR-seq). This enables 
accurate quantification of the reporter transcript as a direct measure of the regulatory 
element activity. For the LUC reporter assays, DNA fragments cloned into the reporter 
vectors are transfected in cells followed by measuring the reporter activity. c | Oncogenic 
properties, such as cell proliferation, migration and invasion, can be tested in vitro using 
cell lines, and tumorigenesis can also be tested in vivo using model organisms. d | The 
cost of functional validation per mutation changes with the techniques used and is  
the highest when in vitro and in vivo oncogenic validation studies are included. 
Approximate cost per variant for functional validation from 10 up to 100 variants is 
calculated using a combination of site directed mutagenesis (SDM; ~US$100 per variant) 
and reporter luciferase assays (~$180 per variant). However, for functional validation of 
over 1,000 variants, cost per variant is optimized with oligonucleotide library synthesis 
with and without the mutation, cloning (~$1,250 per variant), transfection into cells, RNA 
extraction and high-throughput sequencing (~$15 per variant) and reporter assays. The 
light blue line depicts the huge increase in cost when biological validation (in vitro and 
in vivo tumorigenic assays) are also carried out.

element. In a separate approach, visible reporter assays 
using synthetic transcription reporter constructs (such 
as luciferase reporter assays) that contain the regulatory 
sequences of the reporter gene enable direct validation 
of non-coding mutations. This approach is distinct 
from the sequencing-based approaches and involves 
preparation of control and variant constructs based on 
sequence information. Low- to medium-throughput 
can be achieved by testing the luciferase expression 
driven of constructs individually in multi-well plates. 
A major limitation of this well-by-well approach is the 
variable efficiency of transfecting cells with the reporter 
vector, which prevents this approach from becoming a 
high-throughput assay.

Besides the strategies discussed above, which vali-
date the effects of variants in promoters and enhanc-
ers on gene expression, other approaches are needed 
to validate variants in ncRNAs, UTRs and introns. For 
instance, the effects of mutations in 3ʹ and 5ʹ UTRs have 
been tested by constructing large-scale mutant librar-
ies with thousands of sequence variants and measuring 
their effects on mRNA and protein expression32,33. This 
approach revealed that most mutations in the 3ʹ UTRs 
in model organisms such as yeast have a minor effect on 
expression. However, some mutations in a TA-rich ele-
ment linked with 3ʹ end processing had a strong effect, 
with up to tenfold change in expression32. Among the 

5ʹ UTR vari ants, the UTR nucleotides at positions −3 
to −1, those affecting mRNA secondary structure and 
out-of-frame upstream AUGs had the strongest effects 
on protein levels33. To test the effects of intronic vari-
ants on splicing, minigene assays can be used. In these 
assays, the variant sequence is cloned into transcription- 
competent minigene vectors and transfected into 
mammalian cells. This is followed by examination of 
the splicing patterns of the transcripts generated from  
wild-type and variant constructs123,124.

Functional screening approaches help to identify 
the best candidates but still need tumour type-specific 
validation. For example, in melanoma samples, muta-
tion in the NDUFB9 promoter significantly altered pro-
moter activity, as assessed by a luciferase assay in the 
COLO-829 cell line, but the expression of this promoter 
did not differ significantly between patients that carry 
the mutation versus those that do not125. Thus, tissue, 
tumour and genomic context are important factors and 
require validation.

Functional validation requires demonstrating onco-
genic properties that are increased owing to the variant 
in question (FIG. 5c). To achieve this, wild type (control) 
and mutants are compared in vitro in transfection-based 
functional assays in cell lines, and in vivo using model 
organisms (for example, zebrafish or mice). Cell line 
experiments can be used to assess increased cell prolifer-
ation, colony formation and the ability of cells to invade 
through a barrier. In vivo models compare tumour 
growth and ability to achieve metastases between the 
control and mutant variants. In both in vitro and in vivo 
experiments, the selection of model systems is crucial 
and potentially limiting; ideally, one tries to achieve 
the context that most closely resembles the situation in 
which the mutations arose. For some tumour types, like 
breast, lung and melanoma, there are abundant cell lines, 
but for others, such as prostate cancer, only few cell lines 
exist. New approaches in developing patient-derived 
spheroids or organoids have been proposed to bridge 
this gap126–128.

Thus, overall functional validation of non-coding 
vari ants is extremely important to understand their 
biological consequence. High-throughput analysis of 
variants substantially reduces the cost per variant tested 
(FIG. 5d). Among the current methods for functional val-
idation of variants, the biological validation for onco-
genic properties is the most costly because of the model 
systems used and the amount of time it takes to achieve 
a biologi cally relevant readout. For example, if a mouse 
model is used to test xenografts, it may take months to 
determine meaningful growth objectives. When com-
paring the influence of non-coding variants between 
humans and mice it will be important to consider species- 
specific differences and selection of mouse strains with 
appropriate genetic backgrounds129. If a genetically engi-
neered mouse model is required, de novo tumour devel-
opment could take years and hundreds of mice. However, 
using CRISPR–Cas9 strategies to develop such models 
may help to accelerate this process in the near future130,131. 
Thus, in general, high-throughput prioritization of puta-
tive functional mutations is crucial before the testing of the  

◀

Minigene assays
Assays using a plasmid with 
a minimal gene fragment 
necessary for the gene to be 
expressed. It can include exons 
as well as introns, and it serves 
as a tool for evaluating splicing 
patterns.
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most promising candidates in in vivo systems, given the 
lengthier developmental time and high costs of in vivo 
assays compared with other validation steps.

Conclusions
The current belief is that cancer arises because of the 
accumulation of multiple driver mutations132, some of 
which are non-coding. This may be particularly the case 
for cancer types in which coding driver mutations have 
not been identified in major subpopulations of patients, 
such as non-small cell lung cancer133. The current pub-
lished literature is biased against driver mutations in 
non-coding regions as these sequences have yet to be 
explored to the same extent as coding genes owing to the 
lower costs of exome sequencing and difficulty of inter-
preting the consequences of mutations in  non-coding 
regions.

Recent studies have shown that small changes in 
gene expression caused by non-coding mutations can 
have large phenotypic impact (for example, a SNP in 
the enhancer of the KITLG gene causes 20% change 
in gene expression and is responsible for blond hair 
colour134). Thus, the combined effect of small changes 
in expression due to non-coding mutations in cancer 
might be more important than currently appreciated. 
Indeed, evidence is emerging that the cumulative 
effect of co-suppression or co-activation of multiple 
genes can lead to tumorigenesis. In particular, certain  
oncogenes and tumour-suppressor genes seem to have 
a range of oncogenic potential, and cancer results 
from the combined effect of their CNVs135,136. Thus,  
genomic vari ants contribute to oncogenesis with con-
tinuously varying effects, as opposed to their binary 
classification into driver mutations and passenger 
mutations. The effects of somatic variants also depend 
on the existing genetic background, for example, the 

presence of risk alleles in inherited germline DNA. 
Although some somatic vari ants may have a direct role 
(such as TERT promoter mutations found in many dif-
ferent cancer types69),  others may modulate important  
cancer pathways indirectly.

Currently, there is a debate in the community 
about whether we should analyse whole genomes or 
exomes. Studies of somatic non-coding mutations are 
currently reserved for research purposes and have not 
been incorporated into precision medicine cancer care 
approaches in the clinic. This is primarily because cur-
rent therapeutic approaches attempt to target proteins. 
However, as discussed in this Review, non-coding  
driver mutations are linked with the expression of 
the protein-coding genes they regulate. Thus, iden-
tification of non-coding driver mutations can enable 
therapeutic approaches that target the linked protein. 
Moreover, identification of  non-coding germline var-
iants associated with increased cancer susceptibility is 
also important for risk assessment and potentially for 
preventive approaches.

The above discussion highlights the importance of 
accurately determining the links between cis-regulatory 
regions and their target genes to interpret the functional 
effects of regulatory variants. Although many approaches 
exist (as discussed in this Review), this remains an active 
and important area of research, especially the develop-
ment of high-throughput 3C-derived technologies. We 
note that even when the links between regulatory regions 
and target genes are known, it will be important to study 
the effects of mutations in all elements controlling gene 
expression in a comprehensive manner. Thus, network 
approaches will be important to understand the role of 
non-coding mutations in cancer. We might also be able 
to identify new pathways or new participants in known 
pathways that are important in cancer.

1. Kandoth, C. et al. Mutational landscape and 
significance across 12 major cancer types. Nature 
502, 333–339 (2013).

2. Easton, D. F. & Eeles, R. A. Genome-wide association 
studies in cancer. Hum. Mol. Genet. 17, R109–R115 
(2008).

3. Maurano, M. T. et al. Systematic localization of 
common disease-associated variation in regulatory 
DNA. Science 337, 1190–1195 (2012).

4. Chen, C. Y., Chang, I. S., Hsiung, C. A. & 
Wasserman, W. W. On the identification of potential 
regulatory variants within genome wide association 
candidate SNP sets. BMC Med. Genomics 7, 34 
(2014).

5. Akhtar-Zaidi, B. et al. Epigenomic enhancer profiling 
defines a signature of colon cancer. Science 336, 
736–739 (2012).

6. Kron, K. J., Bailey, S. D. & Lupien, M. Enhancer 
alterations in cancer: a source for a cell identity crisis. 
Genome Med. 6, 77 (2014).

7. Prensner, J. R. & Chinnaiyan, A. M. The emergence 
of lncRNAs in cancer biology. Cancer Discov. 1,  
391–407 (2011).

8. Iyer, M. K. et al. The landscape of long noncoding 
RNAs in the human transcriptome. Nat. Genet. 47, 
199–208 (2015).

9. Stirzaker, C., Taberlay, P. C., Statham, A. L. & 
Clark, S. J. Mining cancer methylomes: prospects and 
challenges. Trends Genet. 30, 75–84 (2014).

10. The 1000 Genomes Project Consortium. An integrated 
map of genetic variation from 1,092 human genomes. 
Nature 491, 56–65 (2012).

11. Alexandrov, L. B. et al. Signatures of mutational 
processes in human cancer. Nature 500, 415–421 
(2013).

12. Abyzov, A. et al. Somatic copy number mosaicism in 
human skin revealed by induced pluripotent stem 
cells. Nature 492, 438–442 (2012).

13. De, S. Somatic mosaicism in healthy human tissues. 
Trends Genet. 27, 217–223 (2011).

14. Lawrence, M. S. et al. Mutational heterogeneity in 
cancer and the search for new cancer-associated 
genes. Nature 499, 214–218 (2013).
Shows how mutational heterogeneity in the genome 
can lead to false positives during the identification 
of cancer driver genes.

15. Horn, S. et al. TERT promoter mutations in familial and 
sporadic melanoma. Science 339, 959–961 (2013).
One of the first papers showing prevalence of TERT 
promoter mutations in cancer.

16. Daye, Z. J., Li, H. & Wei, Z. A powerful test for multiple 
rare variants association studies that incorporates 
sequencing qualities. Nucleic Acids Res. 40, e60 
(2012).

17. Baca, S. C. et al. Punctuated evolution of prostate 
cancer genomes. Cell 153, 666–677 (2013).

18. Stephens, P. J. et al. Massive genomic rearrangement 
acquired in a single catastrophic event during cancer 
development. Cell 144, 27–40 (2011).

19. Holland, A. J. & Cleveland, D. W. Boveri revisited: 
chromosomal instability, aneuploidy and 
tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 
(2009).

20. Nik-Zainal, S. et al. Mutational processes molding the 
genomes of 21 breast cancers. Cell 149, 979–993 
(2012).

21. Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: 
molecular mechanisms and evolutionary processes 
underlying divergence. Nat. Rev. Genet. 13, 59–69 
(2012).

22. Galas, D. J. & Schmitz, A. DNAse footprinting: 
a simple method for the detection of protein−DNA 
binding specificity. Nucleic Acids Res. 5, 3157–3170 
(1978).

23. Neph, S. et al. An expansive human regulatory lexicon 
encoded in transcription factor footprints. Nature 
489, 83–90 (2012).

24. Dunham, I. et al. An integrated encyclopedia of DNA 
elements in the human genome. Nature 489, 57–74 
(2012).
Discussion of functional annotations from the 
ENCODE project.

25. Hughes, J. R. et al. Analysis of hundreds of cis-
regulatory landscapes at high resolution in a 
single, high-throughput experiment. Nat. Genet. 46, 
205–212 (2014).

26. de Laat, W. & Dekker, J. 3C-based technologies 
to study the shape of the genome. Methods 58,  
189–191 (2012).

27. Yip, K. Y. et al. Classification of human genomic 
regions based on experimentally determined binding 
sites of more than 100 transcription-related factors. 
Genome Biol. 13, R48 (2012).

28. The GTEx Consortium. The Genotype-Tissue 
Expression (GTEx) pilot analysis: multitissue gene 
regulation in humans. Science 348, 648–660 (2015).

29. Gerstein, M. B. et al. Architecture of the human 
regulatory network derived from ENCODE data. 
Nature 489, 91–100 (2012).

30. Chadwick, L. H. The NIH Roadmap Epigenomics 
Program data resource. Epigenomics 4, 317–324 
(2012).

31. Kundaje, A. et al. Integrative analysis of 111 
reference human epigenomes. Nature 518, 317–330 
(2015).

Precision medicine
Medical care tailored to the 
individual patient, usually using 
the patient’s genomic 
sequence.

R E V I E W S

106 | FEBRUARY 2016 | VOLUME 17 www.nature.com/nrg

© 2016 Macmillan Publishers Limited. All rights reserved



32. Shalem, O. et al. Systematic dissection of the 
sequence determinants of gene 3ʹ end mediated 
expression control. PLoS Genet. 11, e1005147 
(2015).

33. Dvir, S. et al. Deciphering the rules by which 5ʹ-UTR 
sequences affect protein expression in yeast. Proc. 
Natl Acad. Sci. USA 110, E2792–E2801 (2013).

34. Lappalainen, T. et al. Transcriptome and genome 
sequencing uncovers functional variation in humans. 
Nature 501, 506–511 (2013).

35. The GTEx Consortium. The Genotype-Tissue 
Expression (GTEx) project. Nat. Genet. 45, 580–585 
(2013).

36. Morris, K. V. & Mattick, J. S. The rise of regulatory 
RNA. Nat. Rev. Genet. 15, 423–437 (2014).

37. Guttman, M. & Rinn, J. L. Modular regulatory 
principles of large non-coding RNAs. Nature 482, 
339–346 (2012).

38. Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. 
Polycomb proteins targeted by a short repeat RNA to 
the mouse X chromosome. Science 322, 750–756 
(2008).

39. Rinn, J. L. et al. Functional demarcation of active and 
silent chromatin domains in human HOX loci by 
noncoding RNAs. Cell 129, 1311–1323 (2007).

40. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. 
& Brockdorff, N. Requirement for Xist in 
X chromosome inactivation. Nature 379, 131–137 
(1996).

41. Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. 
Interaction of noncoding RNA with the rDNA promoter 
mediates recruitment of DNMT3b and silencing of 
rRNA genes. Genes Dev. 24, 2264–2269 (2010).

42. Zhang, Z. et al. PseudoPipe: an automated 
pseudogene identification pipeline. Bioinformatics 22, 
1437–1439 (2006).

43. Khurana, E. et al. Segmental duplications in the 
human genome reveal details of pseudogene 
formation. Nucleic Acids Res. 38, 6997–7007 (2010).

44. Sasidharan, R. & Gerstein, M. Genomics: protein 
fossils live on as RNA. Nature 453, 729–731 (2008).

45. Tam, O. H. et al. Pseudogene-derived small interfering 
RNAs regulate gene expression in mouse oocytes. 
Nature 453, 534–538 (2008).

46. Loots, G. G. et al. Identification of a coordinate 
regulator of interleukins 4, 13, and 5 by cross-species 
sequence comparisons. Science 288, 136–140 
(2000).

47. Pennacchio, L. A. & Rubin, E. M. Genomic strategies 
to identify mammalian regulatory sequences. Nat. Rev. 
Genet. 2, 100–109 (2001).

48. Waterston, R. H. et al. Initial sequencing and 
comparative analysis of the mouse genome. Nature 
420, 520–562 (2002).

49. Gibbs, R. A. et al. Genome sequence of the Brown 
Norway rat yields insights into mammalian evolution. 
Nature 428, 493–521 (2004).

50. Lindblad-Toh, K. et al. Genome sequence, comparative 
analysis and haplotype structure of the domestic dog. 
Nature 438, 803–819 (2005).

51. Bejerano, G. et al. Ultraconserved elements in  
the human genome. Science 304, 1321–1325 
(2004).

52. Peng, J. C., Shen, J. & Ran, Z. H. Transcribed 
ultraconserved region in human cancers. RNA Biol. 
10, 1771–1777 (2013).

53. Calin, G. A. et al. Ultraconserved regions encoding 
ncRNAs are altered in human leukemias and 
carcinomas. Cancer Cell 12, 215–229 (2007).

54. Khurana, E. et al. Integrative annotation of variants 
from 1092 humans: application to cancer genomics. 
Science 342, 1235587 (2013).
One of the first methods for genome-wide 
identification of non-coding candidate cancer 
drivers.

55. Katzman, S. et al. Human genome ultraconserved 
elements are ultraselected. Science 317, 915 (2007).

56. Ward, L. D. & Kellis, M. Evidence of abundant 
purifying selection in humans for recently acquired 
regulatory functions. Science 337, 1675–1678 
(2012).

57. Visel, A., Minovitsky, S., Dubchak, I. & 
Pennacchio, L. A. VISTA Enhancer Browser — 
a database of tissue-specific human enhancers. 
Nucleic Acids Res. 35, D88–D92 (2007).

58. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & 
Lee, W. Genome-wide analysis of noncoding regulatory 
mutations in cancer. Nat. Genet. 46, 1160–1165 
(2014).
Analysis of hundreds of cancer whole-genomes to 
identify driver mutations in non-coding regions.

59. Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. 
Systematic analysis of noncoding somatic mutations 
and gene expression alterations across 14 tumor 
types. Nat. Genet. 46, 1258–1263 (2014).

60. Smith, K. S. et al. Signatures of accelerated somatic 
evolution in gene promoters in multiple cancer types. 
Nucleic Acids Res. 43, 5307–5317 (2015).

61. Melton, C., Reuter, J. A., Spacek, D. V. & Snyder, M. 
Recurrent somatic mutations in regulatory regions of 
human cancer genomes. Nat. Genet. 47, 710–716 
(2015).

62. Katainen, R. et al. CTCF/cohesin-binding sites are 
frequently mutated in cancer. Nat. Genet. 47,  
818–821 (2015).

63. Puente, X. S. et al. Non-coding recurrent mutations 
in chronic lymphocytic leukaemia. Nature 526,  
519–524 (2015).

64. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and 
next-generation sequencing: computational challenges 
and solutions. Nat. Rev. Genet. 13, 36–46 (2012).

65. Mijuškovic´, M. et al. A streamlined method for 
detecting structural variants in cancer genomes by 
short read paired-end sequencing. PLoS ONE 7, 
e48314 (2012).

66. Meyerson, M., Gabriel, S. & Getz, G. Advances in 
understanding cancer genomes through second-
generation sequencing. Nat. Rev. Genet. 11, 685–696 
(2010).

67. Heidenreich, B., Rachakonda, P. S., Hemminki, K. 
& Kumar, R. TERT promoter mutations in cancer 
development. Curr. Opin. Genet. Dev. 24, 30–37 
(2014).

68. Huang, F. W. et al. Highly recurrent TERT promoter 
mutations in human melanoma. Science 339,  
957–959 (2013).
One of the first papers showing prevalence of TERT 
promoter mutations in cancer.

69. Killela, P. J. et al. TERT promoter mutations occur 
frequently in gliomas and a subset of tumors derived 
from cells with low rates of self-renewal. Proc. Natl 
Acad. Sci. USA 110, 6021–6026 (2013).

70. Hnisz, D. et al. Super-enhancers in the control of cell 
identity and disease. Cell 155, 934–947 (2013).

71. Mansour, M. R. et al. An oncogenic super-enhancer 
formed through somatic mutation of a noncoding 
intergenic element. Science 346, 644–648 (2014).

72. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and 
ETS transcription factor genes in prostate cancer. 
Science 310, 1373–1377 (2005).

73. Yu, J. et al. An integrated network of androgen 
receptor, polycomb, and TMPRSS2−ERG gene 
fusions in prostate cancer progression. Cancer Cell 17, 
443–454 (2010).

74. Berger, M. F. et al. The genomic complexity of primary 
human prostate cancer. Nature 470, 214–220 
(2011).

75. Weischenfeldt, J. et al. Integrative genomic analyses 
reveal an androgen-driven somatic alteration 
landscape in early-onset prostate cancer. Cancer Cell 
23, 159–170 (2013).

76. Northcott, P. A. et al. Enhancer hijacking activates 
GFI1 family oncogenes in medulloblastoma. Nature 
511, 428–434 (2014).

77. Breit, T. M. et al. Site-specific deletions involving the 
tal-1 and sil genes are restricted to cells of the T cell 
receptor α/β lineage: T cell receptor δ gene deletion 
mechanism affects multiple genes. J. Exp. Med. 177, 
965–977 (1993).

78. Nambiar, M., Kari, V. & Raghavan, S. C. Chromosomal 
translocations in cancer. Biochim. Biophys. Acta 
1786, 139–152 (2008).

79. Gutschner, T. & Diederichs, S. The hallmarks of cancer: 
a long non-coding RNA point of view. RNA Biol. 9, 
703–719 (2012).

80. Han, Y., Liu, Y., Nie, L., Gui, Y. & Cai, Z. Inducing cell 
proliferation inhibition, apoptosis, and motility 
reduction by silencing long noncoding ribonucleic acid 
metastasis-associated lung adenocarcinoma transcript 
1 in urothelial carcinoma of the bladder. Urology 81, 
209.e1–209.e7 (2013).

81. Liu, P. Y. et al. Effects of a novel long noncoding  
RNA, lncUSMycN, on N-Myc expression and 
neuroblastoma progression. J. Natl Cancer Inst. 106, 
dju113 (2014).

82. Buechner, J. & Einvik, C. N-myc and noncoding RNAs 
in neuroblastoma. Mol. Cancer Res. 10, 1243–1253 
(2012).

83. Lin, P. C. et al. Epigenetic repression of miR-31 
disrupts androgen receptor homeostasis and 
contributes to prostate cancer progression. Cancer 
Res. 73, 1232–1244 (2013).

84. Poliseno, L. et al. A coding-independent function of 
gene and pseudogene mRNAs regulates tumour 
biology. Nature 465, 1033–1038 (2010).

85. Karreth, F. A. et al. The BRAF pseudogene functions 
as a competitive endogenous RNA and induces 
lymphoma in vivo. Cell 161, 319–332 (2015).

86. Bahcall, O. G. iCOGS collection provides a 
collaborative model. Nat. Genet. 45, 343 (2013).

87. MacArthur, D. G. et al. A systematic survey of 
loss-of-function variants in human protein-coding 
genes. Science 335, 823–828 (2012).

88. Wang, Q., Lu, Q. & Zhao, H. A review of study designs 
and statistical methods for genomic epidemiology 
studies using next generation sequencing. Front. 
Genet. 6, 149 (2015).

89. Bond, G. L. & Levine, A. J. A single nucleotide 
polymorphism in the p53 pathway interacts with 
gender, environmental stresses and tumor genetics 
to influence cancer in humans. Oncogene 26,  
1317–1323 (2007).

90. Bond, G. L. et al. A single nucleotide polymorphism 
in the MDM2 promoter attenuates the p53 tumor 
suppressor pathway and accelerates tumor formation 
in humans. Cell 119, 591–602 (2004).

91. Grisanzio, C. & Freedman, M. L. Chromosome 
8q24-associated cancers and MYC. Genes Cancer 1, 
555–559 (2010).

92. Huang, Q. et al. A prostate cancer susceptibility 
allele at 6q22 increases RFX6 expression by 
modulating HOXB13 chromatin binding. Nat. Genet. 
46, 126–135 (2014).

93. Oldridge, D. A. et al. Genetic predisposition to 
neuroblastoma mediated by a LMO1 super-enhancer 
polymorphism. Nature 528, 418–421 (2015).

94. Garritano, S. et al. In‑silico identification and 
functional validation of allele-dependent AR 
enhancers. Oncotarget 6, 4816–4828 (2015).

95. Bakker, J. L. et al. A novel splice site mutation in the 
noncoding region of BRCA2: implications for Fanconi 
anemia and familial breast cancer diagnostics. 
Hum. Mut. 35, 442–446 (2014).

96. Demichelis, F. et al. Identification of functionally active, 
low frequency copy number variants at 15q21.3 and 
12q21.31 associated with prostate cancer risk. 
Proc. Natl Acad. Sci. USA 109, 6686–6691 (2012).

97. Chen, X. et al. Targeted resequencing of the 
microRNAome and 3ʹUTRome reveals functional 
germline DNA variants with altered prevalence in 
epithelial ovarian cancer. Oncogene 34, 2125–2137 
(2015).

98. Yang, Q. et al. Genetic variations in miR-27a gene 
decrease mature miR-27a level and reduce  
gastric cancer susceptibility. Oncogene 33, 193–202 
(2014).

99. Chu, M. C., Selam, F. B. & Taylor, H. S. HOXA10 
regulates p53 expression and matrigel invasion in 
human breast cancer cells. Cancer Biol. Ther. 3,  
568–572 (2004).

100. Li, Q. et al. Integrative eQTL-based analyses reveal 
the biology of breast cancer risk loci. Cell 152,  
633–641 (2013).

101. Xu, X. et al. Variants at IRX4 as prostate cancer 
expression quantitative trait loci. Eur. J. Hum. Genet. 
22, 558–563 (2014).

102. Ongen, H. et al. Putative cis-regulatory drivers in 
colorectal cancer. Nature http://dx.doi.org/10.1038/
nature13602 (2014).

103. Knudson, A. G. Mutation and cancer: statistical study 
of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 
820–823 (1971).

104. Calin, G. A. et al. Human microRNA genes are 
frequently located at fragile sites and genomic regions 
involved in cancers. Proc. Natl Acad. Sci. USA 101, 
2999–3004 (2004).

105. Pasic, I. et al. Recurrent focal copy-number changes 
and loss of heterozygosity implicate two noncoding 
RNAs and one tumor suppressor gene at chromosome 
3q13.31 in osteosarcoma. Cancer Res. 70, 160–171 
(2010).

106. Liu, Q. et al. LncRNA loc285194 is a p53-regulated 
tumor suppressor. Nucleic Acids Res. 41, 4976–4987 
(2013).

107. Rachakonda, P. S. et al. TERT promoter mutations in 
bladder cancer affect patient survival and disease 
recurrence through modification by a common 
polymorphism. Proc. Natl Acad. Sci. USA 110, 
17426–17431 (2013).

108. Gnad, F., Baucom, A., Mukhyala, K., Manning, G. & 
Zhang, Z. Assessment of computational methods for 
predicting the effects of missense mutations in human 
cancers. BMC Genomics 14, S7 (2013).

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 17 | FEBRUARY 2016 | 107

© 2016 Macmillan Publishers Limited. All rights reserved



109. Lee, S. et al. Optimal unified approach for rare-variant 
association testing with application to small-sample 
case−control whole-exome sequencing studies. 
Am. J. Hum. Genet. 91, 224–237 (2012).

110. Tamborero, D. et al. Comprehensive identification of 
mutational cancer driver genes across 12 tumor types. 
Sci. Rep. 3, 2650 (2013).

111. Lochovsky, L., Zhang, J., Fu, Y., Khurana, E. & 
Gerstein, M. LARVA: an integrative framework for 
large-scale analysis of recurrent variants in noncoding 
annotations. Nucleic Acids Res. 43, 8123–8134 
(2015).
Method that accounts for heterogeneity in 
mutation rate in non-coding regions to identify 
regulatory driver mutations.

112. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid 
changes that affect protein function. Nucleic Acids 
Res. 31, 3812–3814 (2003).

113. Adzhubei, I. A. et al. A method and server for 
predicting damaging missense mutations. 
Nat. Methods 7, 248–249 (2010).

114. Polak, P. et al. Cell-of-origin chromatin organization 
shapes the mutational landscape of cancer. Nature 
518, 360–364 (2015).
Shows that somatic mutation density can be 
predicted based on epigenomic features from the 
cell of origin.

115. Fu, Y. et al. FunSeq2: a framework for prioritizing 
noncoding regulatory variants in cancer. Genome Biol. 
15, 480 (2014).

116. O’Roak, B. J. et al. Multiplex targeted sequencing 
identifies recurrently mutated genes in autism 
spectrum disorders. Science 41, 177–181  
(2012).

117. Konermann, S. et al. Genome-scale transcriptional 
activation by an engineered CRISPR−Cas9 complex. 
Nature 517, 583–588 (2014).

118. Mogno, I., Kwasnieski, J. C. & Cohen, B. A. Massively 
parallel synthetic promoter assays reveal the in vivo 
effects of binding site variants. Genome Res. 23, 
1908–1915 (2013).

119. Arnold, C. D. et al. Genome-wide quantitative 
enhancer activity maps identified by STARR-seq. 
Science 339, 1074–1077 (2013).

120. Melnikov, A. et al. Systematic dissection and 
optimization of inducible enhancers in human 
cells using a massively parallel reporter assay. 
Nat. Biotechnol. 30, 271–277 (2012).

121. Shlyueva, D., Stampfel, G. & Stark, A.  
Transcriptional enhancers: from properties to genome-
wide predictions. Nat. Rev. Genet. 15, 272–286 
(2014).

122. Kwasnieski, J. C., Fiore, C., Chaudhari, H. G. & 
Cohen, B. A. High-throughput functional testing of 
ENCODE segmentation predictions. Genome Res. 24, 
1595–1602 (2014).

123. Singh, G. & Cooper, T. A. Minigene reporter for 
identification and analysis of cis elements and trans 
factors affecting pre-mRNA splicing. Biotechniques 41, 
177–181 (2006).

124. Gaildrat, P. et al. Use of splicing reporter minigene 
assay to evaluate the effect on splicing of unclassified 
genetic variants. Methods Mol. Biol. 653, 249–257 
(2010).

125. Poulos, R. C. et al. Systematic screening of promoter 
regions pinpoints functional cis-regulatory mutations 
in a cutaneous melanoma genome. Mol. Cancer Res. 
13, 1218–1226 (2015).

126. van de Wetering, M. et al. Prospective derivation of a 
living organoid biobank of colorectal cancer patients. 
Cell 161, 933–945 (2015).

127. Boj, S. F. et al. Organoid models of human and  
mouse ductal pancreatic cancer. Cell 160, 324–338 
(2015).

128. Gao, D. et al. Organoid cultures derived from patients 
with advanced prostate cancer. Cell 159, 176–187 
(2014).

129. Ermann, J. & Glimcher, L. H. After GWAS: mice to the 
rescue? Curr. Opin. Immunol. 24, 564–570 (2012).

130. Seruggia, D., Fernández, A., Cantero, M., Pelczar, P. & 
Montoliu, L. Functional validation of mouse tyrosinase 
non-coding regulatory DNA elements by CRISPR−
Cas9-mediated mutagenesis. Nucleic Acids Res. 43, 
4855–4867 (2015).

131. Mou, H., Kennedy, Z., Anderson, D. G., Yin, H. & 
Xue, W. Precision cancer mouse models through 
genome editing with CRISPR−Cas9. Genome Med. 7, 
53 (2015).

132. Vogelstein, B. et al. Cancer genome landscapes. 
Science 339, 1546–1558 (2013).

133. The Cancer Genome Atlas Research Network. 
Comprehensive molecular profiling of lung 
adenocarcinoma. Nature 511, 543–550 (2014).

134. Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A. & 
Kingsley, D. M. A molecular basis for classic blond 
hair color in Europeans. Nat. Genet. 46, 748–752 
(2014).

135. Davoli, T. et al. Cumulative haploinsufficiency and 
triplosensitivity drive aneuploidy patterns and shape 
the cancer genome. Cell 155, 948–962 (2013).

136. Xue, W. et al. A cluster of cooperating tumor-
suppressor gene candidates in chromosomal 
deletions. Proc. Natl Acad. Sci. USA 109, 8212–8217 
(2012).

137. Wang, K. et al. Whole-genome sequencing and 
comprehensive molecular profiling identify new  
driver mutations in gastric cancer. Nat. Genet. 46, 
573–582 (2014).

138. Thurman, R. E. et al. The accessible chromatin 
landscape of the human genome. Nature 489,  
75–82 (2012).

139. Bush, W. S. & Moore, J. H. Chapter 11: genome-wide 
association studies. PLoS Comput. Biol. 8, e1002822 
(2012).

140. Chelala, C., Khan, A. & Lemoine, N. R.  
SNPnexus: a web database for functional annotation 
of newly discovered and public domain single 
nucleotide polymorphisms. Bioinformatics 25,  
655–661 (2009).

141. Dayem Ullah, A. Z., Lemoine, N. R. & Chelala, C. 
SNPnexus: a web server for functional annotation of 
novel and publicly known genetic variants (2012 
update). Nucleic Acids Res. 40, W65–W70 (2012).

142. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: 
functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 38, 
e164 (2010).

143. McLaren, W. et al. Deriving the consequences  
of genomic variants with the Ensembl API and SNP 
Effect Predictor. Bioinformatics 26, 2069–2070 
(2010).

144. Perera, D. et al. OncoCis: annotation of cis-regulatory 
mutations in cancer. Genome Biol. 15, 485 (2014).

145. Paila, U., Chapman, B. A., Kirchner, R. & 
Quinlan, A. R. GEMINI: integrative exploration 
of genetic variation and genome annotations. 
PLoS Comput. Biol. 9, e1003153 (2013).

146. Coetzee, S. G., Rhie, S. K., Berman, B. P., 
Coetzee, G. A. & Noushmehr, H. FunciSNP: an R/
bioconductor tool integrating functional non-coding 
data sets with genetic association studies to identify 
candidate regulatory SNPs. Nucleic Acids Res. 40, 
e139 (2012).

147. Ward, L. D. & Kellis, M. HaploReg: a resource for 
exploring chromatin states, conservation, and 
regulatory motif alterations within sets of genetically 
linked variants. Nucleic Acids Res. 40, D930–D934 
(2012).

148. Li, M. J., Wang, L. Y., Xia, Z., Sham, P. C. & Wang, J. 
GWAS3D: detecting human regulatory variants by 
integrative analysis of genome-wide associations, 
chromosome interactions and histone modifications. 
Nucleic Acids Res. 41, W150–W158 (2013).

149. Macintyre, G., Bailey, J., Haviv, I. & Kowalczyk, A. 
is-rSNP: a novel technique for in silico regulatory SNP 
detection. Bioinformatics 26, i524–i530 (2010).

150. Boyle, A. P. et al. Annotation of functional variation in 
personal genomes using RegulomeDB. Genome Res. 
22, 1790–1797 (2012).

151. Lehmann, K. V. & Chen, T. Exploring functional variant 
discovery in non-coding regions with SInBaD. Nucleic 
Acids Res. 41, e7 (2013).

152. Kircher, M. et al. A general framework for estimating 
the relative pathogenicity of human genetic variants. 
Nat. Genet. 46, 310–315 (2014).

153. Ritchie, G. R., Dunham, I., Zeggini, E. & Flicek, P. 
Functional annotation of noncoding sequence variants. 
Nat. Methods 11, 294–296 (2014).

154. Gulko, B., Hubisz, M. J., Gronau, I. & Siepel, A. 
A method for calculating probabilities of fitness 
consequences for point mutations across the human 
genome. Nat. Genet. 47, 276–283 (2015).

155. Zhou, J. & Troyanskaya, O. G. Predicting effects 
of noncoding variants with deep learning-based 
sequence model. Nat. Methods 12, 931–934 (2015).

Acknowledgements
F.D. would like to acknowledge grant IG 13562 from AIRC 
(Associazione Italiana per la Ricerca sul Cancro).

Competing interests statement
The authors declare no competing interests.

FURTHER INFORMATION
ANNOVAR: http://openbioinformatics.org/annovar/
CADD: http://cadd.gs.washington.edu
CIS‑BP: cisbp.ccbr.utoronto.ca
DeepSEA: http://deepsea.princeton.edu
ENCODE (derived from ChIP‑seq): encodenets.gersteinlab.org
ENCODE (derived from DHS): regulatorynetworks.org
ENCODE: encodeproject.org
FANTOM: fantom.gsc.riken.jp
FitCons: http://compgen.cshl.edu/fitCons/
FunciSNP: http://bioconductor.org
FunSeq: http://funseq.gersteinlab.org
FunSeq2: funseq2.gersteinlab.org
GEMINI: http://github.com/arq5x/Gemini
GENCODE: gencodegenes.org
GtRNAdb: gtrnadb.ucsc.edu
GWAS3D: http://jjwanglab.org/gwas3d
GWAVA: http://sanger.ac.uk/resources/software/gwava
HaploReg: http://compbio.mit.edu/HaploReg
International Cancer Genome Consortium: http://www.icgc.org
is‑Rsnp: http://bioinformatics.research.nicta.com.au/software/
is-rsnp/
JASPAR: jasper.genereg.net
miRBase: mirbase.org
MiTranscriptome: mitranscriptome.org
OncoCis: http://powcs.med.unsw.edu.au/OncoCis
RegulomeDB: http://RegulomeDB.org
Roadmap epigenomics: roadmapepigenomics.org
SeattleSeq: http://snp.gs.washington.edu/
SeattleSeqAnnotation
SInBaD: http://tingchenlab.cmb.usc.edu/Sinbad
snoRNABase: www-snorna.biotoul.fr
SNPnexus: http://snp-nexus.org
The Cancer Genome Atlas: https://tcga-data.nci.nih.gov
Transfac: biobase-international.com/products
VEP: http://ensembl.org/info/docs/tools/vep

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

108 | FEBRUARY 2016 | VOLUME 17 www.nature.com/nrg

© 2016 Macmillan Publishers Limited. All rights reserved

http://openbioinformatics.org/annovar/
http://cadd.gs.washington.edu
http://cisbp.ccbr.utoronto.ca
http://deepsea.princeton.edu
http://encodenets.gersteinlab.org
http://regulatorynetworks.org
http://encodeproject.org
http://fantom.gsc.riken.jp
http://compgen.cshl.edu/fitCons/
http://bioconductor.org
http://funseq.gersteinlab.org
http://funseq2.gersteinlab.org
http://github.com/arq5x/Gemini
http://gencodegenes.org
http://gtrnadb.ucsc.edu
http://jjwanglab.org/gwas3d
http://sanger.ac.uk/resources/software/gwava
http://compbio.mit.edu/HaploReg
http://www.icgc.org
http://bioinformatics.research.nicta.com.au/software/is-rsnp/
http://bioinformatics.research.nicta.com.au/software/is-rsnp/
http://jasper.genereg.net
http://mirbase.org
http://mitranscriptome.org
http://powcs.med.unsw.edu.au/OncoCis
http://RegulomeDB.org
http://roadmapepigenomics.org
http://snp.gs.washington.edu/SeattleSeqAnnotation
http://snp.gs.washington.edu/SeattleSeqAnnotation
http://tingchenlab.cmb.usc.edu/sinbad/
http://www-snorna.biotoul.fr
http://snp-nexus.org
https://tcga-data.nci.nih.gov
http://biobase-international.com/products
http://ensembl.org/info/docs/tools/vep

	Abstract | Patients with cancer carry somatic sequence variants in their tumour in addition to the germline variants in their inherited genome. Although variants in protein-coding regions have received the most attention, numerous studies have noted the i
	Genomic sequence variants
	Author addresses
	Non-coding element annotations
	Figure 1 | Somatic mutations in various cancer types. Somatic tumour mutations were obtained from whole genome studies in REFS 11,17,137, and cancer types are ordered from left to right based on average number of single nucleotide variants (SNVs) per samp
	Figure 2 | Identification of cis-regulatory elements using functional genomics assays and evolutionary conservation. a | Regulatory elements can show differential activity across tissues and can be identified by various functional genomics assays, includi
	Roles for somatic variants in cancer
	Table 1 | Non-coding annotations
	Figure 3 | Study designs commonly used to identify germline and somatic non-coding sequence variants linked with tumorigenesis. Common germline variants have mostly been probed by genome-wide association studies (GWASs) using blood samples, in which the g
	Roles for germline variants in cancer
	Figure 4 | Effect of sequence variants in non-coding regions in tumorigenesis. A | Overview of the non-coding elements that can be affected. Specific cases are shown in parts B–E. B | Mutations can lead to gain (part Ba) or loss (part Bb) of transcription
	Interplay between germline and somatic variants
	Computational methods for identifying drivers
	Experimental approaches for functional validation
	Table 2 | Computational methods to prioritize non-coding variants with functional effects
	Figure 5 | Methods for functional validation of non-coding variants. a | Mutations in cloned DNA fragments can be generated using site-directed mutagenesis or the CRISPR–Cas system. Synthetic oligonucleotides with a wild-type or mutant sequence can also b
	Conclusions



